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Abstract Faltung equations (closed cycle type) have a wide range of biological applications,
nonetheless, they are poorly studied. We use a Volterra-Kostitzin model (which is a Faltung
equation) to study the dynamics of a certain species, where the integral term represents a residual
action. The complexity of resolution of this non-linear equation using classical numeric methods is
here solved with the Adomian decomposition method. Our method provides the same graphic
solution as others do, such as the numeric method Miladie. However, the decomposition method of
Adomian has the advantage that neither time nor space are considered discontinuous and that it
gives an analytical solution with a reliable approximation.

1. Introduction
Faltung type equations, generally called convolution or closed cycle type
(Tricomi, 1957), are a special kind of Volterra equation, incorporating
convolution products. Integro-differential equations used by Volterra (1930) in
the study of hereditary phenomena are applicable to biology in the study of
fluctuations of the number of individuals of a species. This hereditary
phenomenon is understood from a mathematics-physics point of view
(electricity, electromagnetism, energy), not from a biological one. This means
that the population at a time t not only depends on the initial conditions of the
system, but on the past.

1.1 From Malthus to Volterra-Kostitzin models
Mathematical modelling of a single species began with Malthus, who in 1798,
described exponential growth (equation (1)) (Malthus, 1798). Later, Verhulst
(1838) introduced the logistic term to describe the reduction of growth rate at
high population densities (equation (2)), K being the carrying capacity, where
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births equal deaths and thus, there is no net population change. dP/dt is
positive for P , K, and dP/dt is negative for P . K. Rates of population
growth and decline are influenced by r, the intrinsic growth rate.

dP

dt
¼ rP; ð1Þ

dP

dt
¼ rP

1 2 P

K

� �
: ð2Þ

Later, Pearl (1925, 1927), and Pearl and Reed (1920) insisted that logistic growth
should be considered as a population regulation law, applicable to all kind of
populations. This self-regulation would allow a population to persist without
extinction or explosion. However, it was poorly received due to Pearl’s
insistence that the equation should be considered as an universal law.

Subsequently, Régnier and Lambin (1934) conducted growth experiments on
individual bacterial strains in a non-renewed medium. These experiments
showed a kind of growth which fitted neither exponential nor logistic growth.
This was because, after the growth and stabilization phases, the number of
individuals decreased.

It was at this point when Régnier enquired about this phenomenon of
Volterra. Volterra and his son-in-law, D’Ancona, explained that after the initial
development stages, there was an intoxication of the meadow due to the
excreted by-products of the bacteria (Régnier and Lambin, 1934; Israel and
Millan-Gasca, 1993 p. 169). To model this latter decreasing stage, termed
residual action or toxic action, Volterra introduced an integral term into the
equation (2). He had applied the concepts of physics, where integro-differential
equations were used to study elastic bodies that exhibit hereditary properties
(Volterra, 1930) (equation (3)).

dP

dt
¼ 12 hPðtÞ2

Z 0

t

PðtÞf ðtÞdt

� �
PðtÞ; ð3Þ

where hP(t) models the Verhulst-Pearl effect and the integral term reflects the
influence of the intoxication. Laboratory results were described in biological
terms by Régnier and Lambin (1934) and in mathematical terms by Volterra
(1934). The latter author studied the expression (3) qualitatively, and only
offered an exact solution in a particular case, where the Verhulst-Pearl effect
equals zero and f is a constant, so the resulting approximation did not offer a
reliable approximation to the experimental data of Régnier and Lambin. In the
same paper, Volterra also studied the co-existence of two species,
superimposing the toxic effect of both species.

It was then Kostitzin, a close friend of Volterra, found a general solution to
equation (3). He drew up an explicit calculus of the coefficients 1, h, and c,
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where f (t) ¼ c (Kostitzin, 1935). The author pointed out that during the first
stage of population growth, its dynamics differed little from Malthus growth
(1). As culture progressed, however, the toxic action increased its effects
(he termed this residual action), modifying the logistic dynamics.

Kostitzin solution was applied to isolated culture dynamics, offering a good
fit, although with small deviations, due to other factors such as food or space
(Kostitzin, 1937a). This model was also applied to organism growth (Kostitzin,
1937b) and population extinction (Kostitzin 1937a) improving fitting to
experimental data, since Volterra’s theoretical analysis foresaw an extinction in
an infinite time, while experimental data offered extinction in a finite time.

Kostitzin published the latter paper on residual action together with Volterra
in 1938 (Kostitzin and Volterra, 1938). In this latter paper, they discussed the
new experiment by Régnier and Lambin (1938) on bacteria population when
there was no food limitation, and where the Verhulst-Pearl effect and the
residual action were treated together (4).

1.2 Biological applications
Volterra-Kostitzin (V-K) dynamics can be applied to a broad range of
populations that exhibit some kind of density-dependence (direct or inverse
density dependence).

Direct density dependence is defined as a change in the influence of an
environmental factor – a density dependent factor – that affects population
growth as population density changes, tending to retard population growth, by
increasing mortality or decreasing fecundity, as population density increases,
or to enhance population growth, by decreasing mortality or increasing
fecundity, as density decreases.

Inverse density dependence is defined as a change in the influence of an
environmental factor – a density dependent factor – that affects population
growth as population density changes, tending to enhance population growth,
by decreasing mortality or increasing fecundity, as population density
increases, or to retard population growth, by increasing mortality or decreasing
fecundity, as density decreases. The Allee effect is an example of inverse
density dependence, where as populations become very small, the per capita
birth rate declines because of failure of sexual organisms to find mates, or
death rates can also increase at small population sizes because of loss of any
survival advantages of being in groups (Allee et al. 1949).

After the studies of density dependent self-regulation by Kostitzin, Volterra
and Régnier, more studies appeared against their model than in its favor. It was
in the 1990s that density-dependence was considered a self-regulation process
in many populations. Andrewartha and Birch (1954) insisted that only climate
controlled insect population abundance. Nicholson (1958) suggested that
density dependence was necessary for regulation, but pointed out that no
appropriate methods were available to test density dependence. Maelzer (1970)
criticized the density dependence testing methods. First light appeared with
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Bulmer (1975) who improved statistics to test for density dependence.
Dempster (1983) reviewed the density dependence frequency in some insects,
and he stated that it was very infrequent. However, after applying modern
statistics, density dependence appeared to be very common, although in some
cases it was camouflaged due to time lags (Turchin, 1990; Woiwod and Hanski,
1992) even in Dempster’s original data (Hoyloak, 1993).

The (V-K) equation has other applications apart from population dynamics;
it may also be applied to: (1) molecular processes such as the synthesis of the
protein fibroin (main component of silk) in the worm Bombyx mori. In this case,
the integral term reflects the inhibiting effect of the RNA-degrading enzyme on
the RNA that codifies the protein (Fournier, 1974; Prudhomme, 1976); (2)
embryo and individual development; and (3) bacterial growth modelling in
human and veterinarian pharmacological problems, such as the growing
dynamics of Staphiloccocus aureus modelled by Renard et al. (1993), who used
both the logistic and the V-K approach, both being similar adjustments due to
the low value of the integral term in the V-K model.

Furthermore, the growth characteristics described by the V-K when c , 0
has a wide application field in cell, tissue and micro-organism cultures, such as
bacterium, fungi or yeast, where a death phase, or low growth phase, occurs
after the exponential phase.

The most common application of the V-K model is for modelling the
dynamics of a density variable (N) over time, which once trespassing a
threshold, affects N positively (inverse density dependence) or negatively
(direct density dependence). Nonetheless, the V-K model has been used to
analyse the relationship between two variables. These are RNA-degrading
enzyme over RNA concentration per gland (Pavé, 1997); in fish populations,
egg-production over recruitment (Beveton and Holt, 1957, p.56, 278; Ricker,
1954), where high population forces a negative density-dependent relationship
between both variables. Woiwod and Hanski (1992) used a regression method
based on Ricker equation to detect density dependence.

In this paper, we model the dynamics of a certain species where the integral
term of the integro-differential equation represents a residual action. The
complexity of resolution of this non-linear equation, using classical numeric
methods, is solved here with the new proposed decomposition method by
Adomian. We also graphically compare the modelling results with Miladie
method (Pave and Lebreton, 1973). We have taken up the V-K model again
because, although it could be useful for several applications, the model has not
been studied nor applied sufficiently.

2. The model
We express the V-K model by a simplified integro-differential equation,
introduced by Kostitzin (1937b, p. 161):
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dPðtÞ

dt
¼ 1P k 2 hP kþ1ðtÞ2 cP k

Z 0

t

P mðtÞdt; ;P; ð4Þ

where P is the number of individuals in the population, t is time, 1, h and c are
constants and positive parameters. Kostitzin considered c. 0, so the integral
term acted as a negative feed-back (direct density-dependence). However, it
could also act as a positive feed-back when c , 0 (inverse density-dependence).
Consider that when h ¼ 0 and c ¼ 0; then the equation (4) becomes equation
(1). When c ¼ 0; then equation (4) becomes equation (2), which is the logistic
growth model of Verhulst.

In closed populations with an intoxication factor dependent on population
density, their dynamics can generally be expressed as follows:

P 0ðtÞ ¼ aPðtÞ2 bP 2ðtÞ2 cPðtÞ

Z t

0

kðt 2 tÞ PðtÞ dt ð5Þ

where k(t2t) is a function that represents a residual action function, which is
also decreasing and which can be considered without loosing generality as
kðt 2 tÞ ¼ 1:

Then, the equation (4) can be expressed as the following:

P 0ðtÞ ¼ aPðtÞ2 bP 2ðtÞ2 cPðtÞ QðtÞ; ð6Þ

where

QðtÞ ¼

Z t

0

PðtÞ dt ) PðtÞ ¼ Q 0ðtÞ and P 0ðtÞ ¼ Q 00ðtÞ:

Then, the equation (6) would be

Q 00 ¼ aQ 0 2 bQ 02 2 cQ 0Q ð7Þ

with the initial conditions Qð0Þ ¼ 0 and Q 0(0)¼P(0) ¼ P0.
This results in a non-linear second order differential equation, for which it is

not possible to find the explicit solution, but only approximations can be made
in parametric form as follows:

P ¼ wðQÞ ¼
a

b
þ

c

b2
2

cQ

b
2

a

b
þ

c

P 2
2 P0

� �
e2bQ ð8aÞ

t ¼

Z Q

0

dd

wðdÞ
ð8bÞ
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Equation (8(a) and (b)) give the population P in time t, expressed as a
function of the parameter q, where the population P cannot be negative.
Furthermore, the solution of equation (7) can only be expressed in
parametric form, and equation (8(b)) has no integrable integrate, which
means that it cannot be solved numerically. As a result, this model has not
been used more frequently. Thus, the use of the proposed numeric method
(decomposition method) will allow this kind of equation to be dealt with
and their solutions compared with those of other methods used previously,
e.g. for qualitative analysis (Pavé, 1997) and numeric analysis (Pavé and
Lebreton, 1973).

3. An introduction and presentation of the decomposition method of
Adomian
In the early 1980s, Professor G. Adomian introduced a new, powerful and
unique method that solved a wide range of functional equations (algebraic,
differential, integral, integro-differential and partial differential Equations).
It has been proven that this method is particularly effective in solving
mathematical modelling of biomedical systems (Grimalt, 1995a, b). A complete
introduction can be seen in Adomian (1990); convergence problems, in Abbaoui
et al. 2001; applications to differential equations systems, in Grimalt and Pujol
(1999), and Guelall et al. (1997); and applications to partial differential
equations, in Guelall et al. (2000).

In brief, Adomian’s method involves finding a solution in the form of a
series, when it exists, and decomposing a non-linear operator within a series
(series substitution) where each term can be calculated recurrently using
polynomials called Adomian polynomials. Under certain convergence
conditions, the sum of the series is exact, and generally, the series is
truncated. The error can also be calculated by giving an approximation.

Consider the non-linear functional equation

u 2 N ðuÞ ¼ f ; ð9Þ

where N is a non-linear operator and f is a known function. N and f defined in a
certain space (Hilbert or Banach).

The problem involves finding a solution to equation (9) in the form of a
series, that is

u ¼
X1
n¼0

un; ð10Þ

and decomposing the non-linear term

Study and
modelling of a

population

491



N ðuÞ ¼
X1
i¼0

Ai; ð11Þ

where Ai are the Adomian polynomials, which depend exclusively on
u0, u1. . . un which can be obtained from the formula

An ¼
1

n!

dn

dln
N

X1
i¼0

l iui

 !" #
l¼0

ð12Þ

Replacing equations (10) and (12) in equation (9)

X1
n¼0

un 2
X1
n¼0

An ¼ f ; ð13Þ

the terms of the series solve
X1
n¼0

un can be obtained by means of identification
in equation (13).

u0 ¼ f

u1 ¼ A0

..

.

unþ1 ¼ An

9>>>>>>>>>=
>>>>>>>>>;

Adomian scheme for n ¼ 0; 1; . . . ð14Þ

By using this method, the solution series of equation (9) are determined.

3.1 Resolution of the V-K model by the Adomian decomposition method
We shall now solve the V-K model using the Adomian decomposition method.
Given the integro- differential equation n(10), we assume the initial conditions
Qð0Þ ¼ 0 and Q 0ð0Þ ¼ P0.

The Canonical equation is

Lu þ Ru þ Nu ¼ f ; ð15Þ

where L is a differential operator, R is a lineal operator, N is a non-linear
operator and f is a known function.
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Applying the decomposition method, the solution takes the form

uðtÞ ¼
Xn21

k¼0

t 2 t0ð Þk

k!
ukðt0Þ þ L21f ðtÞ2 L21R

X1
n¼0

unðtÞ

 !

2 L21
X1
n¼0

An

 !
; An ¼

1

n!

d

dln
N

X1
n¼0

unl
n

 ! !
l¼0

;

ð16Þ

where LQ ¼ d2Q=dt 2, NQ ¼ b dQ=dt
� �2

þcQ dQ=dt, RQ ¼ 2a dQ=dt, n ¼ 2;
t0 ¼ 0 and f¼ 0.

Identifying terms in equation (16) we have the Adomian schema

u0 ¼
Xn21

k¼1

ðt 2 t0Þ
k

k!
ukðt0Þ þ L21f

u1 ¼ 2L21u0 2 L21A0

u2 ¼ 2L21u1 2 L21A1

u3 ¼ 2L21u2 2 L21A2

..

.

unþ1 ¼ 2L21Run 2 L21An

ð17Þ

Knowing that LP ¼ d2P=dt 2, we obtain the following schema

u0 ¼
X1

k¼o

ðt 2 0Þk

k!
ukð0Þ þ

Z t

0

Z t

0

0 dt

u1 ¼ 2

Z t

0

Z t

0

Ru0 dt2

Z t

0

Z t

0

A0 dt

u2 ¼ 2

Z t

0

Z t

0

Ru1 dt2

Z t

0

Z t

0

A1 dt

..

.

unþ1 ¼ 2

Z t

0

Z t

0

Run dt2

Z t

0

Z t

0

An dt

We use this iterative method to calculate the terms of the series.
We obtain the following terms ui of the Adomian polynomials using an

iterative process (q¼ p0).
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uð0Þ ¼ tq

uð1Þ ¼
1

2
aqt 2 2

1

2
bq2t 2 2

1

6
ct 3q2

uð2Þ ¼ 2
1

2
bq2at 3 þ

1

3
b2q3t 3 þ

5

24
bq3ct 4 2

1

6
acq2t 4 þ

1

30
c2q3t 5 þ

1

6
a2qt 3

uð3Þ ¼ 2
1

4
t 4b3q4 2

7

24
bt 4a2q2 2

17

2520
c3q4t 7 þ

17

360
ac2q3t 6 þ

1

24
a3qt 4

2
11

120
cq2a2t 5 2

9

40
cq4t 5b2 þ

1

2
t 4aq3b2 2

49

720
bc2q4t 6 þ

37

120
bq3ct 5a

..

.

4. Graphic representation of V-K dynamics
4.1 Basic graphs
Using the decomposition method, we only had to calculate up to seven terms of
the series to obtain suitable graphics. Figures 1-4 show the variation of a given
population (P ) over time under different constant values, which reflect different
particular cases. Figure 1 shows exponential growth (note that b and c equal 0).
Figure 2 shows logistic growth and Figures 3 and 4 show V-K dynamics.

Figure 1.
Exponential population
evolution under constant
values

HFF
13,4

494



Graphs 1-4 have been obtained from the polynomials calculated by Adomian
decomposition.

The most important breakthrough of the decomposition method is that by
using only a few terms of the series and easy and programmable no-operations,
we may obtain an explicit solution of a non-linear second order differential
equation, in contrast to the previously applied Miladie method (Pavé and
Lebreton, 1973) that gives a parametric solution.

4.2 Graphic comparison of the Adomian results with the Miladie method
The Miladie resolution method was applied by Pavé and Lebreton (1973). In
these graphs we make a graphic comparison between the Miladie results and
the Adomian’s, for different values of a, b, c and p0 (Figure 5).

Figure 3.
V-K population evolution

under constant values

Figure 2.
Logistic population

evolution under constant
values
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Figure 4.
V-K population evolution
under constant values

Figure 5.
Evolution of p over time t.
Left, graphs from
Adomian method; right,
graph obtained from
Miladie method

HFF
13,4

496



5. Discussion
The re-adjustment by a V-K model of experimental data previously considered
logistic, could improve the fitting, provide more information on growth phases
and reveal the presence of any constraint, which may not have been considered
by the logistic model. Thus, a reasonable application of the V-K model could
offer new data about the dynamics of many biological variables, since many of
them share a compatible dynamics with the proposed method.

We have reviewed the V-K model because of two reasons. Firstly, the
mathematical difficulty involved in its solution, and, secondly, the broad field
of applications, from population dynamics at any scale to the relationship
between the two biological variables (see introduction).

From a mathematical point of view, we introduce the decomposition method,
which allows the solution of the model to be obtained through a series with not
more than five or seven terms. This means that the V-K dynamics may be
represented graphically. Furthermore, our method provides the same graphic
solution as others do, such as the numeric Miladie method (Pave and Lebreton,
1973). However, our decomposition method (Adomian) has the advantage that
neither time nor space are considered discontinuously, providing an analytical
solution with a reliable approximation.
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Pavé, A. (1997), “Modelisation en Biologie et en Ecologie”, Aleas, Paris.
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